Home HashMap源码解析(JDK8)
Post
Cancel

HashMap源码解析(JDK8)

简介

Hashmap是key-value格式的键值对储存容器,key与value都支持null,但非线程安全,若需要线程安全可以使用ConcurrentHashMap。

原理

构造函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;

// 默认因子为0.75,即size达到最大容量的0.75时执行扩容
static final float DEFAULT_LOAD_FACTOR = 0.75f;

final float loadFactor;

public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                            initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

// 使数像上取整为2的次方,例如cap=7(111)之后会返回8(1000)
static final int tableSizeFor(int cap) {
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

tab长度需要为2的整数倍,当容量超过容量因子*tab长度后会执行扩容。最大tab长度为1 « 30,再大也不会再扩容。size最大为int值。

Node节点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// Node槽,hash冲突时会先形成链表或者红黑树
transient Node<K,V>[] table;

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
}

// LinkedHashMap.LinkedHashMapEntry是继承至HashMap.Node的
static final class TreeNode<K,V> extends LinkedHashMap.LinkedHashMapEntry<K,V> {
    TreeNode<K,V> parent;  // red-black tree links
    TreeNode<K,V> left;
    TreeNode<K,V> right;
    TreeNode<K,V> prev;    // needed to unlink next upon deletion
    boolean red;
    TreeNode(int hash, K key, V val, Node<K,V> next) {
        super(hash, key, val, next);
    }
}

get

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

public V getOrDefault(Object key, V defaultValue) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
}

// 前16位与后16为进行异或,充分利用hash值,减少hash冲突
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 若对应hash槽有元素
    if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
        // always check first node
        if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 如果还有元素,就开始根据是树还是链表依次查找
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

hash计算利用前16位与后16位异或,减少冲突。

contains

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public boolean containsKey(Object key) {
    return getNode(hash(key), key) != null;
}

public boolean containsValue(Object value) {
    Node<K,V>[] tab; V v;
    if ((tab = table) != null && size > 0) {
        for (int i = 0; i < tab.length; ++i) {
            for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                if ((v = e.value) == value ||
                    (value != null && value.equals(v)))
                    return true;
            }
        }
    }
    return false;
}

可以看出,containsKey几乎和get一致,containsValue会按照值去依次比较,找到第一个相等的返回true,效率较低。

replace

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Override
public boolean replace(K key, V oldValue, V newValue) {
    Node<K,V> e; V v;
    if ((e = getNode(hash(key), key)) != null && ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
        e.value = newValue;
        afterNodeAccess(e);
        return true;
    }
    return false;
}

@Override
public V replace(K key, V value) {
    Node<K,V> e;
    if ((e = getNode(hash(key), key)) != null) {
        V oldValue = e.value;
        e.value = value;
        afterNodeAccess(e);
        return oldValue;
    }
    return null;
}

可以看出,只有元素存在时才可以替换。

put

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
static final int TREEIFY_THRESHOLD = 8;

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

// 如果有值不修改
public V putIfAbsent(K key, V value) {
    return putVal(hash(key), key, value, true, true);
}

// @onlyIfAbsent 如果存在就不要修改值了
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 如果tab没有初始化,则先进行初始化操作
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        // 如果槽上无元素,则直接插入
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 第一个元素就相等了,表示找到了
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    // 链表中元素大于等于8时转化为树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // 如果已经存在,则返回原来的旧值。
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 大于了因子容量
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 如果已经达到槽的最大限制,则不再扩容,继续在树上添加
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 分组,若相同hash值元素小于等于6时,会转化为链表,否则依然构建为树
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    // 从头到位依次与之前容量-1进行与操作,间接得到第一位,然后依次形成链表,最后插入到其中。
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        } else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

static final int MIN_TREEIFY_CAPACITY = 64;

final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    // 若槽数小于64,因为很容易冲突,所以优先扩容。
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null;
        do {
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}
  1. 首先会对为空的情况进行初始化,初始化默认为16。
  2. 槽位置计算为length - 1 & hash
    • 若对应位置上无元素直接插入
    • 若对应位置有元素为链表,则依次遍历,往最后位置插入,插入后元素若大于等于8且tab长度大于等于64,则转变成树。
    • 若对应位置为树,则查找插入。
  3. 最后会与容量因子进行比较,若超过则进行扩容。
    • 扩容是成倍操作。
    • 扩容操作为获取当前槽元素的第一位hash值来进行划分。
    • 树在分槽后若元素小于等于6则变更为列表,否则依然保持为树。

remove

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;
}

public boolean remove(Object key, Object value) {
    return removeNode(hash(key), key, value, true, true) != null;
}

final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        if(p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                do {
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                // 移出元素,当树已经特别小的时候会转化为链表
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}

移出操作比较简单,先确认是否有元素以及是否能移出。

迭代器

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public Set<K> keySet() {
    Set<K> ks = keySet;
    if (ks == null) {
        ks = new KeySet();
        keySet = ks;
    }
    return ks;
}
public Collection<V> values() {
    Collection<V> vs = values;
    if (vs == null) {
        vs = new Values();
        values = vs;
    }
    return vs;
}
public Set<Map.Entry<K,V>> entrySet() {
    Set<Map.Entry<K,V>> es;
    return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}

迭代器比较简单,通ArrayList一样,在迭代过程中不允许元素的增加或删除

一些额外的方法

1
2
3
4
5
6
7
// Callbacks to allow LinkedHashMap post-actions
// 节点访问
void afterNodeAccess(Node<K,V> p) { }
// 新节点插入
void afterNodeInsertion(boolean evict) { }
// 节点移除
void afterNodeRemoval(Node<K,V> p) { }

HashMap提供的几个空实现的方法,主要用在LinkedHashMap继承HashMap后得到操作的回掉。

总结

  • hashMap由数组组成,使用链表或者红黑树来解决hash冲突。
  • 默认数组长度为2的次方。
  • 添加元素时,若存在hash冲突,则会从链表尾部插入元素。若链表长度大于等于8时,tab长度小于64会优先扩容。否则会转化为红黑树。
  • 当容量超过容量因子上限时会执行扩容操作。扩容时hash值取最新的一位确定位置。树扩容后若元素小于等于6个会转化为链表。
  • 不支持并发操作。支持迭代快速失败。
This post is licensed under CC BY 4.0 by the author.